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Intertemporally dependent preferences and optimal
dynamic behavior

Tapan Mitra∗ and Kazuo Nishimura†

We study a model of optimal dynamic behavior in which the intertemoral preferences
preserve the time additively separable framework of Ramsey models, while exhibiting
Edgeworth–Pareto complementarity between consumption in adjacent periods. We
identify economic environments in which global optimal dynamics under intertem-
poral complementarity exhibits persistent fluctuations even though the misspecified
Ramsey-type theory, under the intertemporal independence assumption, predicts
monotone convergence.
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1 Introduction

The theory of optimal intertemporal allocation has been developed primarily for the case
in which the objective function of the planner or representative agent can be written as:

U (c1, c2 . . .) ≡
∞∑

t=1

δt−1w(ct ), (1)

where c t represents consumption at date t , w the period felicity function, and δ ∈ (0, 1) a
discount factor, representing the time preference of the agent.1 An objective function like
(1) leads to the study of the following problem of Ramsey-optimal growth (under positive
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1When future utilities are not discounted, programs are compared using some version of the Ramsey–Atsumi–
Weizsacker overtaking criterion, but the intertemporal independence aspect of preferences over time is still kept
intact. For a recent contribution, which uses this preference structure and treats the undiscounted case, see Khan
and Mitra (2005).
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discounting) in the standard aggregative model, with a production function, f :

Maximize
∑∞

t=1 δt−1w(ct )

subject to ct+1 = f (kt ) − kt+1 f or t ≥ 0

(ct , kt ) ≥ 0 f or t ≥ 1, k0 = k > 0


 . (2)

The restrictive form of the objective function (1) has been criticized on the ground that
it ignores the intertemporal dependence in the preference structure. One of the first full-
fledged alternative formulations to (1) is contained in the paper by Henry Wan (1970). In his
formulation, intertemporal dependence is explicitly introduced in the objective function,
and the strength of the complementarity between consumption at two dates is postulated
to geometrically decline as the dates get more distant from each other.2

Two interesting features emerge in the study of Wan (1970). First, the misspecified
model (2) can give quite different predictions of optimal dynamic behavior compared to the
correctly specified one, incorporating intertemporal complementarity. Second, a turnpike
behavior of optimal paths is observed in several concrete examples in his framework.

Samuelson (1971) proposes a simpler model in which one can investigate thoroughly
the circumstances under which the turnpike property continues to hold even under in-
tertemporal complementarity. In his formulation, the felicity derived by the agent in period
(t + 1) depends on consumption in that period (c t+1), and also on past consumption (c t ),
so that the objective function becomes:

U (c1, c2, . . .) =
∞∑

t=1

δt−1w(ct , ct+1). (3)

The corresponding dynamic optimization exercise (under discounting) can be written as:

Maximize
∑∞

t=1 δt−1w(ct , ct+1)

subject to ct+1 = f (kt ) − kt+1 f or t ≥ 1

(ct+1, kt+1) ≥ 0 f or t ≥ 1, (k1, c1) = (k, c) > 0


 . (4)

Problem (4) is now viewed as the standard optimization problem under “habit for-
mation”. In this interpretation, the felicity derived by the agent in period (t + 1) depends
on consumption in that period (c t+1), but the felicity function itself is (endogenously)
determined by past consumption (c t ).

Samuelson (1971) provides an analysis of the circumstances under which the turnpike
property would hold locally for the dynamic optimization problem. Boyer (1978) provides
a more general local analysis, indicating the circumstances under which the stationary
optimal stock would be unstable. It seems to us to that it is desirable to have an analysis of
problem (4) that would be able to predict dynamic optimal behavior globally. Before we

2 There has been considerable research on alternative formulations to (1) since the paper by Wan (1970). We
deliberately refrain from a full literature survey here, referring the reader instead to our earlier paper (Mitra and
Nishimura 2005) and the references cited there.
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review our progress in this direction, it is useful to reformulate problems (2) and (4) to
their reduced forms.

Problem (2) can be written in its “reduced form” as:

Maximize
∞∑

t=0
δt u(xt , xt+1)

subject to (xt , xt+1) ∈ � f or t ∈ {0, 1, 2, . . .}
x0 = x




, (5)

where δ ∈ (0, 1) is the discount factor, X is a compact set (representing the state space),
�⊂ X × X is a transition possibility set, u : � → R is a utility function, and x ∈ X is the
initial state of the system.

Similarly, problem (4) can be written in the following “reduced form”:

Maximize
∑∞

t=0 δt u(xt , xt+1, xt+2)

Subject to (xt , xt+1, xt+2) ∈ � f or t ∈ {0, 1, 2, . . .}
(x0, x1) = (x , y)


 , (6)

where δ ∈ (0, 1) is the discount factor, X is a compact set, �⊂ X × X is a transition
possibility set, �= {(x , y, z) : (x , y) ∈� and (y, z) ∈ �}, u : � → R is a utility function,
and (x , y) ∈� is the initial state of the system.

Notice that even under intertemporal dependence in tastes, we have a recursive structure
in the dynamic optimization problem (6) very much like in (5). The difference is that the
state space is X in problem (5), whereas it is a subset of X2 in problem (6). Therefore, for
problem (5), (optimal) value and policy functions are defined on X , and for problem (6),
these functions are defined on �⊂ X2. In terms of examining the dynamic behavior of
optimal programs, we are, therefore, dealing with a one-dimensional dynamical system for
problem (5) and a two-dimensional dynamical system for problem (6).

In Mitra and Nishimura (2005), we examine problem (4) in its reduced form (6). It is
observed there that if the intertemporal complementarity, expressed in the magnitude of
w12, is negative and small (in absolute value) relative to the direct second-order effects (w11

and w22), then the reduced-form utility function is supermodular on �. It can then be
shown that the value function is supermodular on �, and the policy function is increasing
in both arguments on �. Furthermore, the φ-policy function, defined on X , by

φ(x) = h(x , x) for x ∈ X

is seen to satisfy a “single-crossing condition”. These properties allow us to establish a global
turnpike property, thereby providing the global counterpart to Samuelson’s analysis, and
contributing to the second theme to emerge from the paper by Wan (1970).

In the current paper, we focus on the first theme in Wan (1970). Specifically, our
objective is to identify economic environments in which global optimal dynamics under
intertemporal complementarity exhibit persistent fluctuations even though the misspec-
ified Ramsey-type theory, under the intertemporal independence assumption, predicts
monotone convergence.
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In terms of the specification of the model, the only difference from Mitra and Nishimura
(2005) is that intertemporal complementarity, as measured by w12, is now assumed to be
positive. This allows us to establish fairly clear-cut global dynamic behavior, which is shown
to be one of two types: either there is global convergence to the stationary optimal stock,
or there are persistent fluctuations around the stationary optimal stock.

We use local analysis near the stationary optimal stock to identify the circumstances
under which it is locally a repellor. This is seen to occur under a curvature condition, and
a condition that requires that the intertemporal dependence be strong: w12 is not small
relative to direct second-order effects (|w11| and |w22|). Under these circumstances the
first type of global dynamic behavior can be ruled out, and the second type of behavior
holds globally. These conditions, under which volatility is introduced into the standard
aggregative model, do not involve non-convexities of any sort, and they do not involve low
discount factors.

2 The framework

2.1 A model of optimal growth with intertemporally dependent preferences

The model (which follows Samuelson (1971) and Boyer (1978) closely) can be described
in terms of a production function, f , a welfare function, w, and a discount factor, δ.

The production function, f , is a function from R+ to itself which satisfies:
(f) f (0) = 0; f is increasing, strictly concave and continuous on R+ with

supx>0[ f (x)/x] > 1 and infx>0[ f (x)/x] < 1. Furthermore, f is twice continuously dif-
ferentiable on R++ with f ′(x) > 0 and f ′′(x) < 0 for all x > 0.

The welfare function, w, is a function from R
2
+ to R, which satisfies:

(w) w is continuous and strictly concave on R
2
+; it is increasing in both argu-

ments.3 Furthermore, w is twice continuously differentiable on R
2
++ with w1(c , d) > 0,

w2(c , d) > 0, the Hessian of w negative definite, and w12(c , d) > 0 for every (c , d) ∈ R
2
++.

In what follows, we normalize w(0, 0) to 0.
The discount factor, δ, is assumed to satisfy:
(d) 0 <δ < 1, and supx>0[δ f (x)/x] > 1.

The second part of (d) is a familiar δ-productivity assumption.
Under assumption (f), it is well known that there is a unique positive solution to the

equation: f (x) = x . We denote this solution by B, and note that for 0 < x < B , we have
B > f (x) > x , whereas for x > B , we have B < f (x) < x .

A program, in this framework, is described by a sequence (kt , c t ), where kt denotes
the capital stock and c t the consumption in period t . The initial condition is specified by
(k, c) ≥ 0.

3 Boyer (1978) assumes that w is increasing in both arguments. Samuelson (1971) does not; he assumes instead
that w(c , c) is increasing in c. It is this latter assumption that is crucial in proving the uniqueness of a stationary
optimal stock in this model and, therefore, of our “single-crossing property”.
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Formally, a program (kt , c t ) from (k, c) is a sequence satisfying

(k1, c1) = (k, c), kt+1 = f (kt ) − ct+1 for t ≥ 1

0 ≤ ct+1 ≤ f (kt ) for t ≥ 1

}
. (7)

Note that the choice of consumption decisions, c t , starts from t ≥ 2.
If (kt , c t ) is a program from (k, c) ≤ (B , B), then we have (kt , c t ) ≤ (B , B) for

all t ≥ 1. In what follows, we will always restrict the initial condition for programs to
(k, c) ≤ (B , B), without further mention. The set [0, B] becomes the natural state space
for our model, and we denote this set by X .

An optimal program from (k, c) is a program (k̄t , c̄ t ) satisfying

∞∑
t=1

δt−1w(ct , ct+1) ≤
∞∑

t=1

δt−1w(c̄ t , c̄ t+1) (8)

for every program (kt , c t ) from (k, c).

2.2 Conversion to reduced form

It is covenient for our analysis of the model described above to convert it to its reduced
form, where one keeps track only of the capital stock sequence.

To reformulate the optimality exercise in (8) subject to (7), we can proceed as follows.
Define a transition possibility set, �, as:

� = {(x , y) : x ∈ X , 0 ≤ y ≤ f (x)}.

It is easy to check that the transition possibility set, �, is a subset of X2, satisfying

Assumption 1 (0, 0) and (B, B) are in �; if (0, y) ∈� then y = 0.

Assumption 2 � is closed and convex.

Assumption 3 If (x , y) ∈� and x ≤ x ′ ≤ B , 0 ≤ y ′ ≤ y, then (x ′, y ′) ∈�.

Assumption 4 There is (x̃ , ỹ) ∈ � with ỹ > x̃.

Notice that for all x ∈ [0, B], we have (x , x) ∈�. Associated with � is the correspon-
dence � : X → X , given by �(x) = {y : (x , y) ∈�}. Define the set:

� = {(x , y, z) : (x , y) ∈ � and (y, z) ∈ �}.

The reduced form utility function can be defined, for (x , y, z) in � as:

u(x , y, z) = w( f (x) − y, f (y) − z).

One can check that the utility function, u, is a map from � to R, which satisfies:
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Assumption 5 u is continuous and strictly concave on �.

Assumption 6 u is increasing in the first argument, and decreasing in the third argument.

On the interior of �, we can calculate the first-order partial derivatives of u as follows:

u1(x , y, z) = w1( f (x) − y, f (y) − z) f ′(x)

u2(x , y, z) = w2( f (x) − y, f (y) − z) f ′(y) − w1( f (x) − y, f (y) − z)

u3(x , y, z) = −w2( f (x) − y, f (y) − z).

Because w1 > 0 and w2 > 0, it follows that u1 > 0 and u3 < 0, as required in
Assumption 6.

The second-order cross partial derivatives of u can be calculated as follows:

u12(x , y, z) = [w12( f (x) − y, f (y) − z) f ′(y) − w11( f (x) − y, f (y) − z)] f ′(x)

u13(x , y, z) = − f ′(x)w12( f (x) − y, f (y) − z)

u23(x , y, z) = w12( f (x) − y, f (y) − z) − w22( f (x) − y, f (y) − z) f ′(y).

Because w12(c , d) > 0 for all (c , d) ∈ R
2
++, we have u13 < 0, u12 > 0 and u23 > 0 in the

interior of �.
The reduced form model is then described by the triple (�, u, δ). We can describe

programs in this model (conveying the same information as in (7) above) as follows.
The initial condition (which should be considered to be historically given) is specified

by a pair (x, y) in �. A program (x t ) from (x, y) is a sequence satisfying

x0 = x , x1 = y, (xt , xt+1) ∈ � for t ≥ 1. (9)

Therefore, in specifying a program, the period 0 and period 1 states are histor-
ically given. Choice of future states starts from t = 2. Notice that for a program (x t )
from (x , y) ∈�, we have (x t , x t+1, x t+2) ∈� for t ≥ 0.

The initial condition (k, c) in (7) translates to the initial condition in (9) as
(x , y) = ( f −1(k1 + c 1), k1). That is, x is the capital stock (in period 0) that produced
the output (k1 + c 1) in period 1, which was split up between consumption (c1) and capital
stock (k1) in period 1; y is the capital stock in period 1.

An optimal program (x̄ t ) from (x , y) ∈� is a program from (x, y) satisfying

∞∑
t=0

δt u(xt , xt+1, xt+2) ≤
∞∑

t=0

δt u(x̄ t , x̄ t+1, x̄ t+2) (10)

for every program (x t ) from (x, y).
Under our assumptions, a standard argument suffices to ensure the existence of an

optimal program from every initial condition (x , y) ∈�. Using Assumptions (2) and (5),
it can also be shown that this optimal program is unique.

82 International Journal of Economic Theory 2 (2006) 77–104 C© IAET



Tapan Mitra and Kazuo Nishimura Intertemporal preferences and optimal dynamics

We can define a value function, V : � → R by

V(x , y) =
∞∑

t=0

δt u(x̄ t , x̄ t+1, x̄ t+2), (11)

where (x̄ t ) is the optimal program from (x, y). Then, V is concave and continuous on �.
It can be shown that for each (x , y) ∈�, the Bellman equation

V(x , y) = max
(y,z)ε�

[u(x , y, z) + δV(y, z)] (12)

holds. Also, V is the unique continuous function on �, which solves the functional equa-
tion (12).

For each (x , y) ∈�, we denote by h(x , y) the value of z that maximizes
[u(x , y, z) + δV(y, z)] among all z satisfying (y, z) ∈�. Then, a program (x t ) from
(x , y) ∈� is an optimal program from (x, y) if and only if:

V(xt , xt+1) = u(xt , xt+1, xt+2) + δV(xt+1, xt+2) for t ≥ 0. (13)

This, in turn, holds if and only if

xt+2 = h(xt , xt+1) for t ≥ 0. (14)

We will call h the (optimal) policy function. It can be shown by using standard arguments
that h is continuous on �.

3 Basic properties of the model

3.1 Properties of a stationary optimal stock

In this subsection, we present some basic properties of a stationary optimal stock in our
framework, which will be useful in studying global and local dynamics of optimal programs
in the next two sections.

Given assumptions (f) and (d), there is a unique positive solution to the equation:

δ f ′(x) = 1. (15)

We denote this solution by x̄ and note that 0 < x̄ < B . It follows then by (f) that:

f (x̄) = [ f (x̄)/x̄]x̄ > f ′(x̄)x̄ = x̄/δ (16)

and, consequently:

f (δx̄) ≥ δ f (x̄) > x̄. (17)

Using (16) and (17), we have (δx̄ , x̄ , x̄/δ) ∈ �, and:

u(δx̄ , x̄ , x̄/δ) = w( f (δx̄) − x̄ , f (x̄) − (x̄/δ)) > w(0, 0) = 0 = u(0, 0, 0).

This property of the reduced-form model is worth noting explicitly as:

International Journal of Economic Theory 2 (2006) 77–104 C© IAET 83



Intertemporal preferences and optimal dynamics Tapan Mitra and Kazuo Nishimura

Assumption 7 For x̄ satisfying (15), we have (δx̄ , x̄ , x̄/δ) ∈ �, and u(δx̄ , x̄ , x̄/δ) >

u(0, 0, 0).

Assumption 7 is a δ-normality assumption jointly on (�, u, δ). It is analogous to the
δ-normality assumption in the usual reduced-form model, where it is used to establish the
existence of a nontrivial stationary optimal stock.

As is to be expected (from Samuelson 1971) x̄ is the unique nontrivial stationary state
of the dynamical system (14), a result that is worth stating explicitly.

Lemma 1 If k ∈ (0, B) satisfies h(k, k) = k, then k = x̄ , where x̄ is the unique solution of
(15).

PROOF: Given that h(k, k) = k, we know that the sequence (k, k, k, k, . . .) is optimal
starting from (k, k). Because k ∈ (0, B), we know from (f) that f (k) − k > 0, so that
(k, k, k) belongs to the interior of �. Therefore, it must satisfy the following version of the
Ramsey–Euler equation for our framework:

u3(k, k, k) + δu2(k, k, k) + δ2u1(k, k, k) = 0.

Then, denoting f (k) − k by c, we have:

w2(c , c)(−1) + δ[w1(c , c)(−1) + w2(c , c) f ′(k)] + δ2w1(c , c) f ′(k) = 0

and this yields, using (w), the result that δ f ′(k) = 1. Therefore, k must be equal to x̄. �

Denote [0, x̄] by Y , and consider, for each k ∈ X , the following constrained optimization
problem:

Maximize u((1 − δ2)k + δ2x , (1 − δ)k + δx , x)

subject to x ∈ Y

}
(P ).

Using Assumptions 3 and 7, we have, for each k ∈ X , ((1 − δ2)k + δ2x ,
(1 − δ)k + δx , x) ∈�. To see this, note that ((1 + δ)k, k, 0) ∈� for all k ∈ X and
(δx , x , x/δ) ∈� for all x ∈ Y , so that:

(1 − δ)((1 + δ)k, k, 0) + δ(δx , x , x/δ) = ((1 − δ2)k + δ2x , (1 − δ)k + δx , x) ∈ �.

Therefore, problem (P) is well-defined. For each k ∈ X , there is a unique solution to (P),
which we denote by g (k). The function, g , can be shown to be continuous on X by an
application of the maximum theorem. Now, Lemma 1 leads to the following result.

Lemma 2 For all k ∈ [0, x̄), we have g (k) > k.

PROOF: For k = 0, we have u((1 − δ2)k + δ2 x̄ , (1 − δ)k + δx̄ , x̄) = u(δ2 x̄ , δx̄ , x̄).
By Assumption 7, we obtain u(δ2 x̄ , δx̄ , x̄) ≥ δu(δx̄ , x̄ , x̄/δ) + (1 − δ)u(0, 0, 0) =
δu(δx̄ , x̄ , x̄/δ) > u(0, 0, 0). Therefore, x = 0 cannot solve problem (P) when k = 0. This
means g (0) > 0.

If the claim of the Lemma does not hold, then by continuity of g , there must be some
k ∈ (0, x̄) for which g (k) = k must hold. That is, for this k, k itself must solve problem (P).
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But, then we must have:

u(k, k, k) ≥ u((1 − δ2)k + δ2(k + ε), (1 − δ)k + δ(k + ε), (k + ε)),

with ε > 0 small enough so that (k + ε) ∈ Y . This can be rewritten as:

w( f (k) − k, f (k) − k) ≥ w( f (k + δ2ε) − (k + δε), f (k + δε) − (k + ε)).

Therefore, denoting f (k) − k by c, we have the first order condition:

0 = w1(c , c){ f ′(k)δ2 − δ} + w2(c , c){ f ′(k)δ − 1}.
Then, using (w), we must have δ f ′(k) = 1, which means that k = x̄ , a contradiction. �

Using Lemmas 1 and 2, we can establish the following result.

Lemma 3 For each k ∈ [0, x̄), we have:

u((1 − δ2)k + δ2x , (1 − δ)k + δx , x) ≤ u(k, k, k) for all x ∈ [0, k].

PROOF: Suppose, contrary to the statement of the Lemma, that there is some x ∈ [0, k)
such that:

u((1 − δ2)k + δ2x , (1 − δ)k + δx , x) > u(k, k, k).

Note that because k ∈ Y , and g (k) �= k by Lemma 2, the uniqueness of solution to (P)
implies:

u((1 − δ2)k + δ2g (k), (1 − δ)k + δg (k), g (k)) > u(k, k, k).

Because g (k) > k by Lemma 2, we have g (k) > k > x , and so there is λ ∈ (0, 1) such that
k = λx + (1 − λ)g (k). Then, we obtain:

u(k, k, k) = u((1 − δ2)k + δ2k, (1 − δ)k + δk, k)

= u(λ((1 − δ2)k + δ2x , (1 − δ)k + δx , x)

+ (1 − λ)((1 − δ2)k + δ2g (k), (1 − δ)k + δg (k), g (k)))

≥ λu((1 − δ2)k + δ2x , (1 − δ)k + δx , x)

+ (1 − λ)u((1 − δ2)k + δ2g (k), (1 − δ)k + δg (k), g (k))

> λu(k, k, k) + (1 − λ)u(k, k, k) = u(k, k, k),

a contradiction.

3.2 Properties of the value and policy functions

In this subsection, we summarize some basic properties of the value and policy functions.
The property of the value function relates to its behavior at (k, k), where k > 0, as k converges
to 0. It is a consequence of the δ-normality Assumption 7. The proof is omitted because
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the method used to establish Proposition 2 in Mitra and Nishimura (2005) can be used
directly.

Proposition 1 The value function, V, satifies the property:

[V(k, k)/k] → ∞ as k → 0.

We now proceed to study two important properties of the policy function. The first is
a monotonicity property that says that policy function is decreasing in the first argument.
This is crucially dependent on the property of u that u13 < 0; this, in turn, relies on the
assumption on w that w12 > 0.

Proposition 2 If (x , y) ∈� and (x ′, y) ∈� and x ′ > x , then h(x ′, y) ≤ h(x , y).

PROOF: Let (x, y) and (x ′, y) belong to the interior of � with x ′ > x . Define z = h(x , y)
and z′ = h(x ′, y). We claim that z′ ≤ z. Suppose, on the contrary, that z′ > z. We know that

V(x , y) = u(x , y, z) + δV(y, z)

V(x ′, y) = u(x ′, y, z′) + δV(y, z′).

Because (x , y) ∈� and (y, z′) ∈�,

V(x , y) ≥ u(x , y, z′) + δV(y, z′).

Because (x ′, y) ∈� and (y, z) ∈�,

V(x ′, y) ≥ u(x ′, y, z) + δV(y, z).

Therefore, we get

[u(x , y, z) + u(x ′, y, z′)] + δ[V(y, z) + V(y, z′)]

≥ [u(x , y, z′) + u(x ′, y, z)] + δ[V(y, z′) + V(y, z)].
(18)

This clearly yields:

u(x , y, z) + u(x ′, y, z′) ≥ u(x , y, z′) + u(x ′, y, z).

This inequality can be rewritten as:

u(x ′, y, z′) − u(x ′, y, z) ≥ u(x , y, z′) − u(x , y, z). (19)

Rewriting each side of (19) as an integral, we get:∫ z′

z
u3(x ′, y, s )ds ≥

∫ z′

z
u3(x , y, s )ds (20)

because (x ′, y, s ) and (x, y, s) belong to the interior of � for all s ∈ (z, z′). However, because
u13 is negative in the interior of �, and x ′ > x , we have u3(x ′, y, s ) < u3(x , y, s ) for each
s ∈ (z, z′). This contradicts (20) and establishes that z′ ≤ z.
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If (x, y) and (x ′, y) are in � and x ′ > x , then we can approximate (x, y) and (x ′, y) by
(x̃ , ỹ) and (x̃ ′, ỹ) in the interior of �, with x̃ ′ > x̃. Then, we have h(x̃ ′, ỹ) ≤ h(x̃ , ỹ), and
by using the continuity of h on �, we obtain h(x ′, y) ≤ h(x , y). �

A tool introduced in Mitra and Nishimura (2005) is the φ-policy function defined
by:

φ(x) = h(x , x) for all x ∈ X. (21)

This turns out to be useful in the present context too. Clearly, φ is a continuous function on
X . Using Proposition 2, we can establish the following important single-crossing property
of the φ-policy function.

Proposition 3 The φ-policy function satisfies:

(i) φ(x) > x for x ∈ (0, x̄)

(i i) φ(x) < x for x ∈ (x̄ , B]

}
. (22)

PROOF: We establish (22)(i) as follows. Suppose, on the contrary, there is some k ∈ (0, x̄)
for which φ(k) ≤ k. If equality holds, then k = x̄ by Lemma 1, a contradiction. So we must
have φ(k) < k. This, in turn, means that φ(x) < x for all x ∈ (0, x̄), using the continuity
of φ.

Denote by (x t ) the optimal program from (k, k). Then, we have:

x2 = h(k, k) = φ(k) < k (23)

and

x3 = h(k, x2) ≤ h(x2, x2) = φ(x2), (24)

the weak inequality in (24) following from (23) and Proposition 2. If x 2 = 0, then x t = 0
for t ≥ 2. If x 2 > 0, then φ(x 2) < x 2 and (24) implies that x 3 < x 2. Therefore, repeating
this argument for all successive t , we get x t+1 ≤ x t for t ≥ 0.

Define

x ′ = (1 − δ)
∞∑

t=0

δt xt+1, x ′′ = (1 − δ)
∞∑

t=0

δt xt+2. (25)

Therefore, x t+2 ≤ k for all t ≥ 0, we must have x ′′ ≤ k.
Now, we can write:

x̂ ≡ (1 − δ)
∞∑

t=0

δt xt

= (1 − δ)x0 + δ

[
(1 − δ)

∞∑
t=0

δt xt+1

]

= (1 − δ)x0 + δx ′

= (1 − δ)x0 + δ[(1 − δ)x1 + δx ′′]. (26)
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Because (x t , x t+1, x t+2) ∈� for all t ≥ 0, and

(x̂ , x ′, x ′′) =
(

(1 − δ)
∞∑

t=0

δt xt , (1 − δ)
∞∑

t=0

δt xt+1, (1 − δ)
∞∑

t=0

δt xt+2

)

and (1 − δ)
∑∞

t=0 δt = 1, and � is convex, we have (x̂ , x ′, x ′′) ∈ �. Therefore, by Jensen’s
inequality:

(1 − δ)
∞∑

t=0

δt u(xt , xt+1, xt+2)

≤ u

(
(1 − δ)

∞∑
t=0

δt xt , (1 − δ)
∞∑

t=0

δt xt+1, (1 − δ)
∞∑

t=0

δt xt+2

)

= u(x̂ , x ′, x ′′)

= u((1 − δ)x0 + δ[(1 − δ)x1 + δx ′′], [(1 − δ)x1 + δx ′′], x ′′)

= u((1 − δ2)k + δ2x ′′, (1 − δ)k + δx ′′, x ′′)

≤ u(k, k, k), (27)

the last inequality in (27) following from Lemma 3, using the fact that k ∈ (0, x̄), and
x ′′ ≤ k. However, clearly, (27) implies that (k, k, k, k, . . .) is optimal from k, so that
φ(k) = k, a contradiction. This establishes (22)(i).

To establish (22)(ii), we note first that φ (B) < B . This follows by using the proof of
Proposition 4 in Mitra and Nishimura (2005). Therefore, if (22)(ii) does not hold, there
is some k ∈ (x̄ , B) such that φ(k) = k, by continuity of φ. However, then, we must have
k = x̄ by Lemma 1, a contradiction. �

4 Global dynamics

In this section, we analyze the global dynamics of the dynamical system generated by the
optimal policy function through the equation (14). It is a two-dimensional dynamical
system and, therefore, it is considerably harder to provide a complete picture of the global
dynamics in this case, compared to the one-dimensional system generated by the standard
one-sector model of Ramsey-optimal growth.

In particular, note that we were concerned in Section 3 with properties of optimal
programs starting from (k, k) ∈�. It is more difficult to study properties of optimal
programs starting from an arbitrary (x , y) ∈�, because this history can affect the utility in
the first two periods in ways that are difficult to predict, given our standard assumptions.

Progress with the analysis is considerably simplified if we assume (following Mitra and
Nishimura 2005) that the utility function has bounded steepness.

Assumption 8 There is A > 0, such that for all (x , y, z), (x ′, y ′, z′) in
�, |u(x , y, z) − u(x ′, y ′, z′)| ≤ A‖(x , y, z) − (x ′, y ′, z′)‖.
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Assumption 8 ensures that u is Lipschitz-continuous, with Lipschitz constant A. The
norm used in Assumption 8 is the sum-norm; that is, ‖(x , y, z)‖ = |x| + |y| + |z| for (x,
y, z) in R

3.
A basic implication of this assumption is noted below.

Lemma 4 For (x , y) ∈� and (x , y) 
 0, we must have h(x , y) > 0.

PROOF: Suppose on the contrary that there is (x , y) ∈� with (x , y) 
 0 and h(x , y) = 0.
Then, (x t ) ≡ (x , y, 0, 0, 0, . . .) is optimal starting from (x, y). Using Proposition 1, we can
find k ∈ (0, y), such that:

V(k, k)/k ≥ 3A/δ2. (28)

Note that (k, k) ∈�, and let (x ′
t ) be the optimal program from (k, k)y. Using the fact

that k ∈ (0, y), we also have (y, k) ∈�, and we can define the program:

(x ′′
t ) ≡ (x , y, k, k, x ′

2, x ′
3, . . . . . .). (29)

Using Assumption 8, we have u(x , y, 0) − u(x , y, k) ≤ Ak, and u(y, k, k) −
u(y, 0, 0) ≤ 2Ak. Therefore, we obtain:

∞∑
t=0

δt u(xt , xt+1, xt+2) −
∞∑

t=0

δt u(x ′′
t , x ′′

t+1, x ′′
t+2)

= u(x , y, 0) + δu(y, 0, 0) − δ2V(k, k)

≤ Ak(2 + δ) − 3Ak < 0, (30)

where we have used the facts that (x ′
t ) is the optimal program from (k, k), and (28). But,

(30) clearly contradicts the fact that (x t ) is optimal starting from (x, y). �

We now state our first result on global dynamics, which might appear to be very weak,
but which turns out to be very helpful for the subsequent analysis.

Proposition 4 If (x t ) is an optimal program from (x , y) ∈� with (x , y) 
 0, and x < x̄ ,
then the following property cannot hold:

xt+1 ≤ xt for all t ≥ 0. (31)

PROOF: Using Lemma 4, we have x t > 0 for t ≥ 0. Suppose (31) holds. Then, the sequence
(x t ) must converge. If it converges to some m > 0, then we have m ∈ (0, x̄), and by conti-
nuity of h, we must also have h(m, m) = m. Therefore, m = x̄ by Lemma 1, a contradiction.

This leaves us with the possibility that (x t ) converges to zero. Using Proposition 1, we
can find k′ > 0, such that for all k ∈ (0, k′), we have:

V(k, k)/k ≥ 4A/δ(1 − δ). (32)

Because x t → 0 as t → ∞, there is some T ≥ 2, such that x t ∈ (0, k′) for all t ≥ T . Define
k = x T , and note that (k, k) ∈�. Let (x ′

t ) be the optimal program from (k, k). Using the
fact that k = x T , we can define the program:

(x ′′
t ) ≡ (x0, . . . , xT−1, k, k, x ′

2, x ′
3, . . . . . .). (33)
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Using Assumption 8, we have u(x T−1, x T , x T+1) − u(x T−1, k, k) ≤ Ak, and
u(x t , x t+1, x t+2) = u(x t , x t+1, x t+2) − u(0, 0, 0) ≤ 3Ak for t ≥ T , because x t ≤ x T = k
for t ≥ T by (31). Therefore, we obtain:

∞∑
t=0

δt u(xt , xt+1, xt+2) −
∞∑

t=0

δt u(x ′′
t , x ′′

t+1, x ′′
t+2)

= δT−1[u(xT−1, xT , xT+1) − u(xT−1, k, k)]

+
∞∑

t=T

δt u(xt , xt+1, xt+2) − δT V(k, k)

≤ δT−1[Ak + {3δAk/(1 − δ)} − {4Ak/(1 − δ)}] < 0, (34)

where we have used the facts that (x ′
t ) is the optimal program from (k, k), and (32). But,

(34) clearly contradicts the fact that (x t ) is optimal starting from (x, y). �

The single-crossing property of φ (Proposition 3) and the monotonicity property of h
in the first argument (Proposition 2) lead to a rather strong monotonicity property over
time of optimal programs.

Proposition 5 Let (x t ) be an optimal program from (x , y) ∈�, with (x , y) 
 0. Then, the
following properties hold:

(i) If x̄ ≥ xt+1 ≥ xt holds for some t , then x t+2 ≥ x t+1 also holds for that t .
(ii) If x̄ ≤ xt+1 ≤ xt holds for some t , then x t+2 ≤ x t+1 also holds for that t .

PROOF: (i) If x̄ ≥ xt+1 ≥ xt holds for some t , then:

xt+2 = h(xt , xt+1) ≥ h(xt+1, xt+1) ≥ xt+1,

where the first inequality follows from Proposition 2 and the second inequality follows
from Proposition 3.

(ii) If x̄ ≤ xt+1 ≤ xt holds for some t , then:

xt+2 = h(xt , xt+1) ≤ h(xt+1, xt+1) ≤ xt+1,

where the first inequality follows from Proposition 2 and the second inequality follows
from Proposition 3. �

An important corollary of this monotonicity property over time is that if the optimal
program is always on the same side (that is, always above or always below) of the nontrivial
stationary optimal stock, it must converge to the nontrivial stationary optimal stock.

Corollary 1 Let (x t ) be an optimal program from (x , y) ∈�, with (x , y) 
 0. Then, the
following properties hold:

(i) If x̄ ≥ xt holds for all t , then xt → x̄ as t → ∞.
(ii) If x̄ ≤ xt holds for all t , then xt → x̄ as t → ∞.
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PROOF: (i) There are two possibilities to consider. Either (a) x t+1 ≤ x t for all t ≥ 0, or
(b) x T+1 > x T for some T ≥ 0. In case (a), using Proposition 4, we must have xt = xt+1 = x̄
for all t ≥ 0, so (i) holds trivially. In case (b), using Proposition 5, we must have x t+1 ≥ x t

for all t ≥ T . Therefore, (x t ) must converge to some k ≤ x̄ . Then continuity of h yields
h(k, k) = k, and Lemma 1 implies that k = x̄ , establishing (i).

(ii) There are two possibilities to consider. Either (a) x t+1 ≥ x t for all t ≥ 0, or
(b) x T+1 < x T for some T ≥ 0. In case (a), (x t ) must converge to some k ∈ [x̄ , B]. Then
continuity of h yields h(k, k) = k, and Proposition 3 implies that k < B . Now, Lemma 1
can be used to conclude that k = x̄ . So, in this case, we actually have xt = xt+1 = x̄ for all
t ≥ 0, and (i) holds trivially. In case (b), using Proposition 5, we must have x t+1 ≤ x t for
all t ≥ T . Therefore, (x t ) must converge to some k ≥ x̄ . Then continuity of h yields h(k,
k) = k, and Lemma 1 implies that k = x̄ , establishing (ii). �

This result should be compared to the turnpike property in the standard one-sector
model of Ramsey-optimal growth, where optimal programs always lie on the same side of
the nontrivial stationary optimal stock: it is not optimal to cross-over the stationary optimal
stock. In the current context, given that the relevant dynamical system is two-dimensional,
such cross-overs cannot be ruled out by optimality arguments.

We can now summarize the global dynamics of optimal programs in the following
statement.

Theorem 1 Let (x t ) be an optimal program from (x , y) ∈�, with (x , y) 
 0. Then, (x t )
satisfies one of the following two properties:

(a) limt→∞ xt = x̄

(b) lim supt→∞xt > lim inf t→∞ xt

and x̄ ∈ [lim inf t→∞ xt , lim supt→∞ xt ]


 . (35)

Case (a) always holds if xt ≤ x̄ for all t ≥ 0, or if xt ≥ x̄ for all t ≥ 0.
PROOF: We have three possibilities to consider: (i) there is some T ≥ 0, such that xt ≤ x̄
for all t ≥ T ; (ii) there is some S ≥ 0, such that xt ≥ x̄ for all t ≥ S; (iii) there is an infinite
number of time periods t for which xt > x̄ , and there is an infinite number of time periods
t for which xt < x̄ .

In case (i), using Lemma 4 and Corollary 1, we have limt→∞ xt = x̄ , so (35) (a) holds.
In case (ii), by Corollary 1, we have limt→∞ xt = x̄ , so (35) (a) holds. In case (iii), we have
lim supt→∞xt ≥ x̄ , and lim inf t→∞ xt ≤ x̄ . If lim supt→∞ xt = lim inf t→∞ xt then, again,
(35)(a) holds. If lim supt→∞ xt > lim inf t→∞ xt , then (35) (b) holds. �

5 Persistent fluctuations

The global dynamical properties obtained in Theorem 1 give a useful classification of
optimal dynamic behavior. Specifically, they suggest a way to investigate conditions on the
model economy that lead to “persistent fluctuations”; that is, fluctuations that never peter
out completely.
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Specifically, Theorem 1 indicates that if one can identify conditions under which the
global asymptotic stability scenario of possibility (a) can be ruled out, then possibility (b)
must occur, leading to persistent fluctuations.

Because possibility (a) makes the unique (nontrivial) stationary stock a global attractor
of the dynamical system (14), possibility (a) will be negated if the stationary optimal stock is
locally a repellor. This suggests that one might be able to propose purely local conditions that
hold near the non-trivial stationary optimal stock to ensure the global result of possibility
(b) of Theorem 1.4

5.1 Local dynamics

In this subsection, we investigate carefully the local dynamics of optimal solutions near
the nontrivial stationary optimal stock. We do this by examining the characteristic roots
associated with the fourth-order difference equation, which represents the linearized version
of solutions to the Ramsey–Euler equations near the nontrivial stationary optimal stock.

Consider the Ramsey–Euler equation:

u3(xt , xt+1, xt+2) + δu2(xt+1, xt+2, xt+3) + δ2u1(xt+2, xt+3, xt+4) = 0. (36)

In particular, of course, x t+s = x∗ for s = 0, 1, 2, 3, 4 satisfies (36):

u3(x∗, x∗, x∗) + δu2(x∗, x∗, x∗) + δ2u1(x∗, x∗, x∗) = 0. (37)

The characteristic equation associated with the Ramsey–Euler equation (36) is given by:

δ2u13β
4 + (

δ2u12 + δu23

)
β3 + (

δ2u11 + δu22 + u33

)
β2 + (δu21 + u32)β + u31 = 0.

(38)

In what follows we drop the points of evaluation of derivatives, it being understood
that the point of evaluation for derivatives of the production function, f , is x̄ , the point of
evaluation for derivatives of the welfare function, w, is (c̄ , c̄), where c̄ = f (x̄) − x̄ , and the
point of evaluation for derivatives of the utility function, u, is (x̄ , x̄ , x̄).

It is convenient for our analysis to define the following magnitudes:

a = δ(−w11) + (−w22)√
δ w12

, (39)

b = (1/
√

δ) + √
δ, (40)

C = δ(− f ′′(k))[δw1 + w2]

w12
(41)

4 The idea of using local conditions at a stationary state to produce persistent fluctuations globally in two-
dimensional dynamical systems is contained in a paper by Sedaghat (1998). However, the dynamical system
considered by him is not obtained from an optimization model.

92 International Journal of Economic Theory 2 (2006) 77–104 C© IAET



Tapan Mitra and Kazuo Nishimura Intertemporal preferences and optimal dynamics

and

γ ≡ {(1 + δ)w12 − [δ(−w11) + (−w22)]}. (42)

Notice that β = 0 is not a solution to (38) because u13 �= 0. We can, therefore, use the
transformed variable,

µ = δβ + (1/β),

to examine the roots of (38). Using this transformation, (38) becomes:

u13µ
2 + (δu12 + u23)µ + [

δ2u11 + δu22 + u33 − 2δu13

] = 0. (43)

Denoting the roots of (43), which is a quadratic in µ, by µ1 and µ2, we note that if:

δ2 <
γ 2

4(− f ′′(k))w12[δw1 + w2]
(C)

then these roots are real and positive. Condition (C) requires that the discount factor
be small relative to an expression involving the curvature of the welfare and production
functions.5

Given µi (i = 1, 2), we can obtain the corresponding roots of β by solving the quadratic:

δβ + (1/β) = µi . (44)

We denote the roots of (44) corresponding to µ1 by β 1 and β 2 (with |β1| = min[|β1|, |β2|])
and the roots of (44) corresponding to µ2 by β 3 and β 4 (with |β3| = min[|β3|, |β4|]). If
we have strong intertemporal dependence so that:

γ ≡ {(1 + δ)w12 − [δ(−w11) + (−w22)]} > 0, (SD)

then βj (for j = 1, 2, 3, 4) are real and β j > 1 for j = 1, 2, 3, 4. Note that (SD) is consistent
with having the Hessian of w negative-definite at the steady state. We can now state the
following result.

Proposition 6 Under the conditions (C) and (SD), the roots of the characteristic equa-
tion (38) associated with the Ramsey–Euler equation satisfy:

1 < β1 < 1/
√

δ < β2; 1 < β3 < 1/
√

δ < β4. (45)

PROOF: We break up the proof into several steps.

Step 1 (Condition [C] is equivalent to 4C < (b − a)2).

5 For the class of dynamic optimization problems described by (5), a sufficient condition for global asymptotic
stability is that the discount factor be large enough relative to an expression involving the curvature of the reduced
form utility function. For this result, see especially Cass and Shell (1976), Brock and Scheinkman (1978), and for
a recent exposition, Mitra (2005). In view of this, it might not be totally unexpected that a condition like (C),
(together with condition [SD]) is used to ensure persistent fluctuations. However, it should be remembered that
(C) is a purely local condition, unlike the conditions used to ensure global asymptotic stability.
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We have:

(b − a) = (1 + δ)√
δ

− [δ(−w11) + (−w22)]

w12

√
δ

= (1 + δ)w12 − [δ(−w11) + (−w22)]

w12

√
δ

so that:

(b − a)2 = {(1 + δ)w12 − [δ(−w11) + (−w22)]}2

δ(w12)2
= γ 2

δ(w12)2
.

Therefore, the condition 4C < (b − a)2 can be written as:

4δ(− f ′′(k))[δw1 + w2]

w12
<

γ 2

δ(w12)2
.

Because w12 > 0, this is clearly equivalent to condition (C).

Step 2 (The condition 4C < (b − a)2 implies that µ1, µ2 are real).
Define:

C ′ =
[
δ2u11 + δu22 + u33 − 2δu13

]
u13

; b′ = −(δu12 + u23)

u13
> 0.

Using (43), to show that µ1, µ2 are real, we need to check that (b′)2 > 4C ′. To this end,
note that:

C ′ = (−w11)δ(1 + δ) + (−w22)(1 + δ) + δ2(− f ′′)[δw1 + w2]

w12
> 0

and:

(b′)2

δ
= {−(δu12 + u23)}2

δ(u13)2

= {[δ(−w11) + (−w22)] + (1 + δ)w12}2

δ(w12)2

= (a + b)2.

Because we have:

δ(a + b)2 − δ(a − b)2 = 4δab = 4a(1 + δ)
√

δ

we obtain:

(b′)2 = δ(a + b)2 = δ(a − b)2 + 4a(1 + δ)
√

δ

> 4δc + 4a(1 + δ)
√

δ = 4[δc + a(1 + δ)
√

δ], (46)
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where we have used 4C < (b − a)2 to obtain the strict inequality in (46). Using the defini-
tions of a and C, we have:

a(1 + δ)
√

δ + δC = [δ(1 + δ)(−w11) + (1 + δ)(−w22)]

w12
+ δC

= [δ(1 + δ)(−w11) + (1 + δ)(−w22)] + δ2(− f ′′)(δw1 + w2)

w12

= C ′.

Using this information in (46) yields (b′)2 > 4C ′, as required.

Step 3 (Condition [SD] is equivalent to b > a).
Using the definitions of a and b, the condition b > a can be written as:

(1 + δ)√
δ

>
[δ(−w11) + (−w22)]

w12

√
δ

,

which is equivalent to:

(1 + δ)w12 > [δ(−w11) + (−w22),

and this is condition (SD).

Step 4 (Condition b > a implies that µi < (1 + δ) for i = 1, 2).
Suppose for some i ∈ {1, 2}, we have µi ≥ (1 + δ). Therefore, we have:

b′ ±
√

(b′)2 − 4C ′

2
≥ (1 + δ). (47)

If (47) holds with the minus sign, then:

b′ ≥ 2(1 + δ) +
√

(b′)2 − 4C ′ > 2(1 + δ)

by Step 2. However, by the calculations of Step 2 above, b′ = √
δ(a + b) < 2b

√
δ, by using

a < b. Therefore, we must have b′ < 2(1 + δ), and (47) must hold with the plus sign. That
is, √

(b′)2 − 4C ′ ≥ 2(1 + δ) − b′. (48)

Now, by the calculations of Step 2, b′ = a
√

δ + b
√

δ = a
√

δ + (1 + δ), so that:

2(1 + δ) − b′ = (1 + δ) − a
√

δ

= √
δ[(1/

√
δ) + √

δ − a]

= √
δ(b − a).

Using this in (48), we get:

(b′)2 − 4C ′ ≥ δ(b − a)2. (49)
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By the calculations of Step 2, we have:

(b′)2 − 4C ′ = δ(a − b)2 + 4a(1 + δ)
√

δ − [4a(1 + δ)
√

δ + 4δC]

= δ(a − b)2 − 4δC .
(50)

Using (49) and (50), we get:

δ[(a − b)2 − 4C] ≥ δ(b − a)2.

However, this is clearly a contradiction, because C > 0.

Step 5 (Condition a > 2 holds, using w12 > 0).
The condition a > 2 is equivalent to:

[δ(−w11) + (−w22)]

w12

√
δ

> 2. (51)

Because the Hessian of w is negative definite, we have:

[
√

δ 1 ]

[
w11 w12

w12 w22

][√
δ

1

]

= δw11 + 2w12

√
δ + w22 < 0.

and this is clearly equivalent to (51), because w12 > 0.

Step 6 (Condition a > 2 implies µi > 2
√

δ for i = 1, 2).
Suppose µi ≤ 2

√
δ for some i ∈ {1, 2}. Because (by Step 4), we have µ j < (1 + δ) for

j �= i , we obtain:

µ1 + µ2 < (1 + δ) + 2
√

δ = (1 +
√

δ)2. (52)

However, µ1 +µ2 = b′, and by the calculations of Step 2, and condition a > 2, we have:

b′ = √
δ(a + b)

> 2
√

δ + (1 + δ) = (1 + √
δ)2,

which contradicts (52).

Step 7 (µi > 2
√

δ for i = 1, 2 implies that β j are real for j ∈ {1, 2, 3, 4}).
Since µ1 > 2

√
δ, we have (µ1)2 > 4δ, and so the roots β 1 and β 2, given by:

β j = µ1 ±
√

(µ1)2 − 4δ

2

are clearly real. The same argument, using µ2 > 2
√

δ, can be used to show that β 3 and β 4

are real.

Step 8 (β j > 1 for j ∈ {1, 2, 3, 4}).
We have β 1β 2 = (1/δ) > 0 and (β 1 +β 2) =µ1/δ > 0, so β 1 and β 2 must be positive.

Suppose β 1 ≤ 1. We have β 2 = (1/δβ 1), so that (β 1 +β 2) =β 1 + (1/δβ 1).
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Define:

g (x) = x + (1/δx) for x > 0.

Then, we have g ′(x) = 1 − (1/δx2) < 0 for x ∈ (0, 1]. Therefore, g attains a minimum on
(0, 1] at x = 1, and so g (x) ≥ g (1) = 1 + (1/δ).

Because β 1 ≤ 1, we have (β 1 +β 2) = g (β 1) ≥ 1 + (1/δ). Therefore, we obtain:

µ1/δ = (β1 + β2) ≥ (1 + δ)/δ

so that µ1 ≥ (1 + δ), which contradicts Step 4. Thus β 1 > 1, and so β 2 > 1. Similarly, one
establishes that β 3 > 1 and β 4 > 1.

Step 9 (Establishing [45]).
Because µ1 > 2

√
δ, we have (µ1)2 −4δ > 0, and so β 2 >β 1 > 1. Because β 1β 2 = (1/δ),

we must have β2 > (1/
√

δ) > β1 > 1. By the same reasoning, β4 > (1/
√

δ) > β3 > 1. �

Remark Our local analysis parallels that offered in Boyer (1978), although our method,
using the transformation (44), is slightly different from his. Because the Hessian of w at
the steady state is negative definite, we have:

δ(−w11) + (−w22) > 2 w12

√
δ.

Because w12 > 0, this ensures that a > 2, as checked in Step 5 of the proof of Proposition 6.
Boyer assumes a > 2 separately. The curvature condition (C) corresponds to Boyer’s con-
dition:

4C < (b − a)2. (53)

However, Boyer does not define C in terms of the primitives. If C is defined as in (41), then
(53) is equivalent to condition (C), as checked in Step 2 of the proof of Proposition 6. The
strong dependence condition (SD) corresponds to Boyer’s condition:

b > a ,

as checked in Step 3 of the proof of Proposition 6.

5.2 An example

One might get the impression from the above analysis that the local instability scenario
imposed by conditions (C) and (SD) arise when the discount factor is sufficiently low.
Actually, conditions (C) and (SD), which ensure that the stationary optimal stock x̄ is
locally a repellor, do not impose uniform discount factor restrictions (independent of w

and f ). To elaborate, given any discount factor δ ∈ (0, 1), one can construct (w, f ) satisfying
all the standard assumptions, such that conditions (C) and (SD) are met at the unique
steady state.
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Let δ ∈ (0, 1) be given. Denote λ = √
δ, and:

H(λ) = (1 − λ)4λ

16(1 + λ)(2 + λ2)2
. (54)

Now, define:

B ′ = min{1/4δ, 1/2, H(λ)}
A′ = (1/δ) + 2B ′.

We now proceed to define the production function as follows. Let:

f (x) =
{

A′x − B ′x2 for x ∈ [0, 2]

f (2) + A′′(x−2)
[B ′′+(x−2)] for x > 2

, (55)

where:

B ′′ = {(1/δ) − 2B ′}/B ′

A′′ = {(1/δ) − 2B ′}2/B ′.

Note that B ′′ = (1/δB ′) −2 ≥ 4 −2 = 2, by definition of B ′. Furthermore, we have

A′′ = {(1/δ) − 2B ′}
B ′ {(1/δ) − 2B ′}

= B ′′{(1/δ) − 2B ′} < B ′′/δ.

It can be checked that f (0) = 0 and f is increasing, strictly concave and twice continuously
differentiable on R+, with f ′ (0) = A′ > 1 and f ′(x) → 0 as x → ∞.

Furthermore, for B̄ = (B ′/δ), one has B̄ > 2 and so:

f (B̄) = A′′ B̄
B ′′ + (B̄ − 2)

<
(B ′′/δ)

B ′′ + (B̄ − 2)
B̄ . (56)

It can be checked that [(B̄ − 2) + B ′′] ≥ (B ′′/δ), and using this information in (56), we
see that f (B̄) < B̄ ; therefore, denoting the maximum sustainable stock by B, we have
B < B̄ .

For the production function, f , we have:

δ f ′(1) = δ[A′ − 2B ′] = 1,

so that the unique nontrivial stationary optimal stock, x̄ = 1. Furthermore, f (x̄) = A′ −
B ′, and c̄ = A′ − B ′ − 1. Note that:

c̄ = (1/δ) + 2B ′ − B ′ − 1 = (1/δ) + B ′ − 1 < (1/δ). (57)

Now, we proceed to define the welfare function, w, as follows. Denote β = (δ/2),
α =µ= 1, ν =βλ, and θ = 4βλ/(1 + λ), and define:

w(c , d) = αc − βc 2 + µd − νd2 + θcd for (c , d) ∈ K × K ,

98 International Journal of Economic Theory 2 (2006) 77–104 C© IAET



Tapan Mitra and Kazuo Nishimura Intertemporal preferences and optimal dynamics

where K = [0, (1/δ)]. Clearly, w is twice continuously differentiable on K 2, and we can
calculate:

w1(c , d) = α − 2βc + θd > α − 2β(1/δ) = 0

w2(c , d) = µ − 2νd + θc > µ − 2ν(1/δ) > 0

w11(c , d) = −2β < 0

w22(c , d) = −2ν < 0

w12(c , d) = w21(c , d) = θ > 0. (58)

To show that the Hessian of w is negative definite, we need to check that θ2 < 4βν. By
definition of θ , we have:

θ2 = 16β2λ2/(1 + λ)2

= (4βλ)(4ν)/(1 + λ)2

= (4νβ)[4λ/(1 + λ)2]

< 4νβ,

because (1 + λ)2 = (1 − λ)2 + 4λ > 4λ for λ ∈ (0, 1). Therefore, the assumption (w) on w

is satisfied on K × K .

Remark Note that we only define w on K 2, and show that the assumption (w) on w is
satisfied on K 2. Now, w can be extended to R

2
+, preserving all these properties; this is a

tedious step that we do not explicitly present. Note also that because the relevant local
conditions (SD) and (C) will need to be checked only at (c̄ , c̄), which belongs to K 2 by
(57), it is only the behavior of w on K 2 that is of significance in what follows.

5.2.1 Checking Condition SD
We now proceed to check that condition SD is satisfied. Define:

φ(z) = 4βz/(1 + z) for z ≥ 0.

Then, we have φ′(z) = 4β/(1 + z)2 > 0. Therefore, we have:

θ = 4βλ/(1 + λ) > 4βδ/(1 + δ)

because λ = √
δ > δ. We can write this as:

θ > [2βδ/(1 + δ)] + [2ν/(1 + δ)].

Using (58), we then have for every (c , d) ∈ K 2:

w12(c , d) > (−w11(c , d)[δ/(1 + δ)] + (−w22(c , d))[1/(1 + δ)]

and this verifies condition (SD).
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Remark Because w12(c , d) = θ > 0 for (c , d) ∈ K 2, and condition (SD) holds, we
have:

a = δ(−w11(c , d)) + (−w22(c , d))

w12(c , d)
√

δ
> 2

for all (c , d) ∈ K 2, following Step 5 of the proof of Proposition 6.

5.2.2 Checking Condition C
We now proceed to check that Condition (C) is satisfied. As already shown in Step 1 of the
proof of Proposition 6, this is equivalent to checking:

4C < (b − a)2, (59)

where a , b, C are as defined in (39), (40) and (41), respectively.
For our example, we have (dropping the point of evaluation (c̄ , c̄) of the derivatives):

(b − a) = (1 + δ)w12 − [δ(−w11) + (−w22)]

w12

√
δ

= (1 + δ)θ − [2δβ + 2ν]

θ
√

δ

= (1 + λ2)

λ
− 2λβ[1 + λ]

θλ

= (1 + λ2)

λ
− 2β[1 + λ]2

4βλ

= (1 + λ2)

λ
− [1 + λ]2

2λ
= [1 − λ]2

2λ
,

so that:

(b − a)2 = (1 − λ)4

4λ2
. (60)

Furthermore, for our example,

4C = (8δB ′/θ)[δw1 + w2].

We now observe, using (57) and (58), that:

δw1 ≤ δ(1 + θ c̄) < δ(1 + (θ/δ)) = (δ + θ) ≤ (2 + δ) (61)

because θ ≤ 4β = 2δ < 2. Similarly, using (57) and (58),

w2 ≤ (1 + θ c̄) < (1 + (θ/δ)) < (2 + δ)/δ. (62)

Combining (61) and (62),

δw1 + w2 < (2 + δ)(1 + δ)/δ < (2 + δ)2/δ. (63)

100 International Journal of Economic Theory 2 (2006) 77–104 C© IAET



Tapan Mitra and Kazuo Nishimura Intertemporal preferences and optimal dynamics

Using (63), we obtain:

4C < (8B ′/θ)(2 + δ)2

= 8B ′(1 + λ)(2 + λ2)2

4λβ

= y
16B ′(1 + λ)(2 + λ2)2

4λδ

≤ 16(1 + λ)(2 + λ2)2

4λδ

(1 − λ)4λ

16(1 + λ)(2 + λ2)2

= (1 − λ)4

4λ2
(64)

using the definition of B ′. Using (60) and (64), condition (C) is verified.

5.3 The main result

Using Theorem 1 and Proposition 6, we obtain the following global result, based on local
conditions at the steady state. It states that every optimal program (except the nontrivial
stationary optimal program) must exhibit persistent fluctuations; that is, fluctuations that
do not dampen over time.

Theorem 2 Let (x t ) be an optimal program from (x , y) ∈�, with (x , y) 
 0, and (x , y) �=
(x̄ , x̄). Under conditions (C) and (SD), (x t ) satisfies the following property:

lim sup
t→∞

xt > lim inf
t→∞ xt and x̄ ∈

[
lim inf

t→∞ xt , lim sup
t→∞

xt

]
. (65)

PROOF: The proof involves several steps. First, we define a (four dimensional) map that
represents solutions to the Ramsey–Euler equations from an arbitrary initial point; this
is done by applying the implicit function theorem. Second, we use this map to define a
diffeomorphism. Third, we apply the Hartman–Grobman theorem to this diffeomorphism
to obtain a homeomorphism that makes the nonlinear map topologically conjugate to
the linear map obtained by evaluating the Jacobian matrix of the nonlinear map at its
stationary solution. Fourth, we use the fact that all the characteristic roots of this matrix
exceed unity to infer that an optimal path from positive initial conditions cannot converge
to the nontrivial stationary optimal stock. One then obtains the conclusion of Theorem 2
by applying Theorem 1.

Step 1 Because f (x̄) > x̄ , we can choose η1 ∈ (0, x̄) such that f (x̄ − η1) > x̄ + η1. Denote
the open interval (x̄ − η1, x̄ + η1) by I 1, and note that I 2

1 ⊂ int �. Define L : I 5
1 → R by:

L (z1, z2, z3, z4, z5) = u3(z1, z2, z3) + δu2(z2, z3, z4) + δ2u1(z3, z4, z5).

Because (z1, z2, z3) ∈ int �, (z2, z3, z4) ∈ int �, (z3, z4, z5) ∈ int �, the map L is well
defined and is a C1 function on its domain. Note that L (x̄ , x̄ , x̄ , x̄ , x̄) = 0 because x̄
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is a stationary optimal stock with (x̄ , x̄ , x̄) ∈ int�, so that it satisfies the Ramsey–Euler
equations. Because u13(x̄ , x̄ , x̄) �= 0 by assumption (w), we can use the implicit function
theorem to obtain a neighborhood U ′ ⊂ I 4

1 of (x̄ , x̄ , x̄ , x̄) and a neighborhood W ′ ⊂ I 1 of
x̄ and a unique function M : U ′ → W ′ such that:

(i) L (z1, z2, z3, z4, M(z1, z2, z3, z4)) = 0 for all (z1, z2, z3, z4) ∈ U ′; and
(ii) M(x̄ , x̄ , x̄ , x̄) = x̄ .

Furthermore, M is a C1 function on U ′. Using (i), we have:

u13(x̄ , x̄ , x̄) + δ2u13(x̄ , x̄ , x̄)M1(x̄ , x̄ , x̄ , x̄) = 0

so that M1(x̄ , x̄ , x̄ , x̄) = −(1/δ2) < 0, because u13(x̄ , x̄ , x̄) �= 0. Define G : U ′ → R
4 by:

G 1(z1, z2, z3, z4) = z2

G 2(z1, z2, z3, z4) = z3

G 3(z1, z2, z3, z4) = z4

G 4(z1, z2, z3, z4) = M(z1, z2, z3, z4). (66)

Step 2 Clearly, G is a C1 function on U ′, and its Jacobian at (x̄ , x̄ , x̄ , x̄) is
−M1(x̄ , x̄ , x̄ , x̄) �= 0; furthermore, G(x̄ , x̄ , x̄ , x̄) = (x̄ , x̄ , x̄ , x̄). Therefore, by the inverse
function theorem,

(i) there exist open sets U and W in R
4 such that (x̄ , x̄ , x̄ , x̄) ∈ U , (x̄ , x̄ , x̄ , x̄) ∈ W , G

is one-to-one on U and G(U ) = W ; and
(ii) there is a unique map g : W → U , which satisfies g (G(z)) = z for all z ∈ U .

Furthermore, g is C1 on W .
Therefore, G : U → W is a diffeomorphism.

Step 3 The characteristic values of the Jacobian matrix of G at (x̄ , x̄ , x̄ , x̄) are given by
β i for i = 1, 2, 3, 4, where the β i refer to the roots obtained from equation (44). This
demonstration follows Mitra and Nishimura (2005) and is omitted. Because β i > 1 for
i = 1, 2, 3, 4 under conditions (C) and (SD), (x̄ , x̄ , x̄ , x̄) is a hyperbolic fixed point of G.

Applying the Hartman–Grobman theorem (see Hartman 1964; Nitecki 1971), there is
a neighborhood U

′ of (x̄ , x̄ , x̄ , x̄) and a homeomorphism H on U
′, such that:

H(G(z)) = AH(z) for all z ∈ U
′, (67)

where A is the Jacobian matrix of G at (x̄, x̄ , x̄ , x̄). Because G(x̄ , x̄ , x̄ , x̄) = (x̄ , x̄ , x̄ , x̄), and
(x̄ , x̄ , x̄ , x̄) is a hyperbolic fixed point of G, (67) implies that H(x̄ , x̄ , x̄ , x̄) = (0, 0, 0, 0).

Clearly, we can find 0 <ε <η1, such that U
4 ⊂ U

′, where U = [x̄ − ε, x̄ + ε]. There-
fore, we have:

H(G(z)) = AH(z) for all z ∈ U
4. (68)
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Step 4 Suppose that (x t ) is an optimal program from some (x , y) 
 0, such that
(x , y) �= (x̄ , x̄), and:

lim
t→∞ xt = x̄.

Then, there is T , such that:

xt ∈ U for all t ≥ T . (69)

There are two possibilities to consider: (A) there is τ such that xt = x̄ for all t ≥ τ ; (B) there
is an infinite number of time periods t , for which xt �= x̄ .

In case (A), we consider the smallest τ for which xt = x̄ for all t ≥ τ . Then, xτ−1 �= x̄ ,
and we have, by the optimality of the program (xt ), h(xτ−1, x̄) = x̄ . Because we also know
that h(x̄ , x̄) = x̄ , it follows from Proposition 2 that for every λ ∈ (0, 1), we must have
h(λxτ−1 + (1 − λ)x̄ , x̄) = x̄ . Choose λ′ ∈ (0, 1) close enough to 0 to ensure that
(λ′xτ−1 + (1 − λ′)x̄ , x̄) ∈ int �, and define x ′ = λ′xτ−1 + (1 − λ′)x̄ . Then,
(x ′, x̄ , x̄ , x̄ , . . . .) is optimal from x ′, and so the following Ramsey–Euler equation holds:

u3(x ′, x̄ , x̄) + δu2(x̄ , x̄ , x̄) + δ2u1(x̄ , x̄ , x̄) = 0.

Also, because x̄ is a stationary optimal stock with (x̄ , x̄ , x̄) ∈ int �, we have:

u3(x̄ , x̄ , x̄) + δu2(x̄ , x̄ , x̄) + δ2u1(x̄ , x̄ , x̄) = 0.

However, because u13 �= 0, the above two equations cannot hold simultaneously. Therefore,
case (A) cannot occur.

So, case (B) must occur. In this case, we can choose N ≥ T such that xN �= x̄ , and using
(68) and (69), we get:

H(G(zt )) = AH(zt ) for all t ≥ T , (70)

where zt = (x t , x t+1, x t+2, x t+3) for t ≥ T . In particular, this gives us:

H(zN+s ) = As H(zN) for s = 1, 2, . . . (71)

Because xN �= x̄ , we have zN �= (x̄ , x̄ , x̄ , x̄), and because H(x̄ , x̄ , x̄ , x̄) = (0, 0, 0, 0); we
know that H(z N) �= (0, 0, 0, 0), otherwise H would not be a homeomorphism.

We denote the inverse of A by P, and note that the characteristic roots of P are (1/β i )
for i = 1, 2, 3, 4. Therefore, the characteristic roots of P are all positive and less than one.
Then (see Hirsch and Smale 1974), there is a norm || ·| | on R

4, and µ∈ (0, 1) such that:

||P z|| ≤ µ||z|| for all z ∈ R
4. (72)

From (71), we get:

H(zN) = P sH(zN+s ) for s = 1, 2, 3, . . . (73)

and using (72), we then obtain:

||H(zN)|| ≤ µs ||H(zN+s )|| for s = 1, 2, 3, . . . (74)
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Clearly, ||H(z)|| is a continuous function on the compact set U
4, and has a maximum, call

it M. Because H(z N) �= (0, 0, 0, 0), we have ||H(z N)|| > 0. We can choose S large enough
so that µS

M < ||H(zN)||, Then, using (74), we get:

||H(zN)|| ≤ µS ||H(zN+S)|| ≤ µS
M < ||H(zN)||,

a contradiction. Therefore, possibility (B) cannot occur either.
We can conclude that if (x t ) is an optimal program from some (x , y) 
 0, such that

(x , y) �= (x̄ , x̄), then the following condition cannot hold:

lim
t→∞ xt = x̄.

Now Theorem 2 follows directly from Theorem 1. �
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